The Minkowski sum (applied to 2d geometry)

clodericmars@gmailicom
http:/\&wvicrowasconatrolinet

B
Goderichars

Formal definition

- A and B are two sets.
- $A \oplus B$ is the Minkowskisum of A and B

What if A and B are 2D shapes ?
Hard to visualize?
Let's see some examples...

Example 1

A is any polygon
Bisaconvex polygon

$\mathbf{A} \oplus \mathbf{B}$

Example 2

A is any polygon
Bis any dise

Intuitive definition

- What is $\mathbf{A} \oplus \mathbf{B}$?
- Take B
- Dip it into some paint

- Put its ($0 ; 0$) on A border
- Translate it along the A perimeter
- The painted area is $\mathbf{A \oplus B}$

What can you do with that?
Notably, motion planning

Free space

- A is an obstacle
- any 2D polygon
- B is a moving object
- 2D translation t
- shape a convex polygon or a disc

$$
\text { te } \mathrm{A} \Theta-\mathrm{B}=\text { collision }
$$

Example 1

A is any polygon
Bisaconvex polygon

Example 2

A is any polygon
Bis any dise

$\mathbf{A} \oplus-\mathbf{B}$

t \# $\mathrm{A} \oplus-\mathrm{B} \Rightarrow$ no collision

$\mathbf{A} \oplus-\mathbf{B}$

$\xrightarrow[t \in A \oplus-B \Rightarrow \text { collision }]{\substack{t}}$

How is it computed?

Two convex polygons

```
ConvexPolygon minkowskiSum(ConvexPolygon a,ConvexPolygon b)
{
    Vertex computedVertices;
    foreach(Vertex VA in a)
    {
        foreach(Vertex vB in b)
        {
        computedVertices push back(vA+vB);
        }
    }
    return convexHulL(computedVertices);
}
```


Any polygons

- Method 1 decomposition
- decompose in convex polygons
- compute the sum of each couple
- the final sum is the union of each sub-sum
- Method 2 convolution
- cf sources

Polygon offsetting

- P is a polygon
- D is a disc of radiuis r
- Computing $P \oplus D=Q$ Ofsetting P by a radius r
- Computation
- Easy for a convex polygon
- cf. souirces

Sources

- http:/Www:cgalorg/Manilal/3:4/doc html/ cgal manual/Mnkowsk: sum 2/Chapter mainihtml
- hitpi/wapedia:mobi/en/Minkowsk addition

