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Abstract—Full automation is often not achievable or desirable
in critical systems with high-stakes decisions. Instead, human-AI
teams can achieve better results. To research, develop, evaluate,
and validate algorithms suited for such teaming, lightweight
experimentation platforms that enable interactions between hu-
mans and multiple AI agents are necessary. However, there are
limited examples of such platforms for defense environments.
To address this gap, we present the Cogment human-machine
teaming experimentation platform, which implements human-
machine teaming (HMT) use cases that features heterogeneous
multi-agent systems and can involve learning AI agents, static AI
agents, and humans. It is built on the Cogment platform and has
been used for academic research, including work presented at the
ALA workshop at AAMAS this year [1]. With this platform, we
hope to facilitate further research on human-machine teaming
in critical systems and defense environments.

Index Terms—Human-Machine Teaming, Reinforcement
Learning, Multi-agent systems

I. INTRODUCTION

Embodied AI agents, such as unmanned aerial vehicles
(UAVs, or drones), have the potential to revolutionize various
industries, including transportation, agriculture, and security.
However, these agents evolve in the physical world and, as
such, can have dangerous effects, especially when left unsuper-
vised. For instance, a UAV may malfunction or fail to identify
potential hazards, resulting in property damage or even human
injury. Moreover, embodied AI agents can make decisions
based on algorithms that may not consider ethical, moral, or
legal implications. Therefore, it is essential for humans to have
the ability to exercise meaningful control [2] and oversight
on these agents to ensure their safe and responsible use.
Human operators can monitor and intervene in cases of system
malfunction, assess potential risks, and make ethical or legal
decisions in complex situations that require their judgment.

In addition to oversight, humans can play a critical role
in helping embodied AI agents achieve their tasks through
collaboration. For example, in the case of UAVs, human
operators in control centers can provide real-time guidance
and support, ensuring that they perform the desired functions
accurately and efficiently. Furthermore, humans can act as
teammates in the field, working alongside embodied AI agents
to achieve complex goals that require both human judgment
and machine precision.

Moreover, it is important to recognize that human-machine
teaming (HMT), the ability for humans and embodied AI

agents to create a bidirectional collaboration, is a key aspect of
safe and effective use of AI. The design, training, validation,
and operation of such AI agents cannot be done in isolation;
it is important to consider how they fit into a larger system
that includes them. Humans, in particular, as operators or as
teammates, should be considered an integral part of this system
from the beginning.

Beyond this bidirectional collaboration, embodied AI sys-
tems often fail to consider “moral responsibility” and “socio-
technical” factors in their operation [2]. The concept of mean-
ingful human control (MHC) was introduced by Santoni de
Sio and van den Hoven to enable humans to influence the
behavior of embodied AI agents [3]. However, the original
definition of MHC is inconsistent because humans may lack
the expertise or the knowledge to fully control AI systems
effectively. Cavalcante Siebert et al. [2] proposed four addi-
tional properties to improve the original definition of MHC: an
“explicit moral operational design domain,” “appropriate and
mutually compatible representations,” “control ability and au-
thority,” and “explicit linkage between AI and human actions.”
Therefore, it is crucial to design an orchestration platform to
combine meaningful human control and human-in-the-loop to
ensure that AI systems are trained and operated in a way that
aligns with human values, societal norms and ethical behavior.

Cogment HMT provides a platform to design and ex-
periment with human-machine teams, in particular involving
UAVs. Built upon our Cogment [4] platform, it addresses the
challenges of orchestrating collaboration between automated
decision-making systems, including AI agents, humans, and
their access to data and their effects on their environment.
The Cogment HMT experimentation platform currently uses
one simulated environment, and can be easily adapted for more
realistic simulations and real-world deployments. We describe
it and its properties in Section III.

Using the Cogment HMT experimentation platform, AI
practitioners can develop agents capable of collaboratively
working with humans and learn from their knowledge and
expectations, and consider factors such as meaningful human
control, trust, and managing cognitive load and enable effec-
tive bidirectional human-machine collaboration. We describe
early results in Section IV.
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Fig. 1: This figure shows the main user interface for the Cogment HMT experimentation platform. The hatched circle on the
left is a restricted area that the team of five blue agent defends. On the right side, the single red dot is the UAV attacker.

II. RELATED WORK

A. Autonomous robotics

Autonomous robotics has seen remarkable progress in re-
cent years with the emergence of various popular experi-
mental environments, including Gym [5], MuJoCo [6], and
IsaacGym [7]. These environments are essential tools for re-
searchers and developers to design and test algorithms quickly
and easily in complex robotic ecosystems. Gym [5] is an open-
source toolkit, developed by Open AI, and widely used in
academia and industries. It provides a standardized interface
and tools for creating, benchmarking, evaluating reinforcement
learning algorithms. on a wide range of tasks, such as playing
Atari games or controlling robots. Other relevant robotics
simulation environments, such as Robosuite [8] built on top
of MuJoCo, and IsaacGym, were developed to cover the
need for physics-based simulation in robotics and computation
requirements. To accurately model and simulate the physical
interactions between robotic systems and their real-world
environments, it is crucial for researchers and developers to
model and capture the underlying physical laws and principles
governing the behavior of objects in the real world such as
gravity, friction, and collisions.

These experimentation platforms are complementary and
well-suited for tasks that require a high degree of physical
realism and significant computational resources, particularly
for simulating large-scale robotic ecosystems. By using these
benchmarks, researchers and developers can more easily iden-
tify and compare the strengths and weaknesses of different
algorithms and select the most effective approaches in a

controlled, safe, and cost-effective manner. However, these
platforms focus on single robots, and are not suited for
collaboration at scale.

B. Multi-agent Systems

Multi-agent reinforcement learning (MARL) [9] is a sub-
field of reinforcement learning (RL) [10] that focuses on
learning algorithms for multi-agent systems. MARL is a
relatively new area of research in artificial intelligence and
robotics. In contrast to a single agent RL, MARL considers
systems in which multiple agents interact with each other
and the environment to achieve a common or individual
goal [11]. Each agent operates independently and makes
decisions based on its local observations, which may affect
the observations and decisions of other agents [12]. Relatively
few experimentation platforms support these types of systems,
making it challenging for researchers and developers to test
and evaluate their algorithms. PettingZoo [13] is an open-
source experimentation platform. It supports heterogeneous
and homogeneous multi-agent systems. It provides a collection
of benchmark environments that simulate real-world scenarios,
with a well-designed API and libraries, and agent interface
tooling. However, when it comes to human teaming, these
experimental environments have some limitations. Libraries,
tools, and interfaces are not suitable for allowing agents to
interact and collaborate with humans.

Beyond the platforms, multi-agent reinforcement learning
(MARL) poses considerable challenges when it is time to
design a robust and intelligent system [14]:



1) Scalability: The number of agents in a system can
increase the complexity of learning and coordination
between the agents, making it challenging to develop
scalable algorithms for MARL.

2) Non-stationarity: The behavior of other agents in dy-
namic environments can change over time, making it
difficult to develop learning algorithms that can adapt to
these changes.

3) Communication and coordination: Designing adequate
protocols and coordination mechanisms that can handle
the heterogeneity of agents [15]. This becomes compli-
cated when introducing robot-human social interaction
and hardware requirements. The algorithms approaches
need to be designed to handle the heterogeneous nature
of the agents, as well as the dynamic and uncertain
nature of the environments they operate in.

4) Partial Observation: An agent may not have access to
complete information about the environment. The trade-
off balance between exploration and exploitation can be
delicate for each agent strategy while also exploiting
their knowledge to achieve isolated tasks individually in
collaborative interaction.

5) Reward function: Designing a reward function that en-
courages agents to work together while considering their
heterogeneity and capabilities can also be a challenging
task.

Finally, existing MARL platforms are designed to support
relatively simple and small-scale environments, where agents
have to learn simple tasks in homogeneous systems [15].
The success of MARL algorithms in one environment does
not guarantee its success in another environment, making
it challenging to develop algorithms or platforms that can
bidirectionally transfer information or knowledge to different
environments. Therefore, when it comes to designing more
complex or realistic heterogeneous multi-robot or multi-agent
systems, a more advanced platform with powerful computation
and algorithmic capabilities is needed.

C. Human-Machine Teaming

Human-machine teaming (HMT) has become increasingly
important in many fields, including robotics, aviation, and
defense. This approach refers to the bidirectional collaboration
between humans and multi-agent systems through a cognitive
interface. There are several different approaches to training
agents for HMT including the following human-in-the-loop
learning (HILL) techniques:

1) Training from human demonstration refers to a method
of teaching a machine how to perform a task by having
a human demonstrate it. The machine can then observe
and learn from the human’s actions, and use this infor-
mation to perform the task autonomously [16].

2) Training from human feedback, or reinforcement learn-
ing from human feedback (RLHF), refers to a process
where humans provide guidance and correction to ma-
chines in order to evaluate the behavior of the system

and provide feedback to help the machine improve its
performance [17].

3) Human intervention refers to the practice of a human
operator taking control of a machine in order to modify
its behavior, either by overriding its actions or by
enriching the learning with new tasks [18].

A comprehensive and detailed exploration of how humans can
assist Reinforcement Learning agents in their learning process
can be found in [19].

These approaches are applied in various applications, such
as the Hanabi card game [20]. This game is used as a
research tool to study collaboration and communication be-
tween humans and machines, as it requires players to work
together to achieve a common goal. Originally designed as
a benchmark for training cooperative agents, Hanabi has
also been used to measure zero-shot training capabilities in
collaborating with new players [21]. Ongoing research, such as
the work done in Cogment-Verse [22], involves implementing
the entire pipeline of self-play, training with randomly se-
lected pre-trained agents, and testing and improving zero-shot
coordination capabilities by involving human players during
training or testing phases. Cogment’s ability to efficiently
switch between different actors, run multiple parallel trials,
and support different training paradigms simultaneously has
proven helpful in this endeavor. Another relevant example of
a human-in-the-loop implementation is collaborative robots,
or cobots [23]. These robots are designed to work alongside
human operators in a collaborative environment, sharing tasks
and responsibilities to improve efficiency, productivity, and
safety. For example, cobots can perform repetitive tasks that
may be difficult or unsafe for humans to perform on their
own [24]. In other cases, cobots can assist human operators
by handing them tools or materials, or by holding parts in place
while the human performs assembly or other tasks. To achieve
these results, these robots are equipped with sensors and other
technologies that allow them to perceive the environment and
interact with humans in a natural and intuitive way.

D. Multi-agent UAV Platforms

Only a few frameworks aim to facilitate research and
development of UAV teams. Aerostack [25] is an open source
software platform based on ROS [26] that enables developers
to control and test UAVs in a specific context of inspection
and surveillance. It interfaces with a variety of APIs and
tools, incorporating a library of computer vision algorithms
and sensors. It provides a modular, and customized multi
layout architecture including modules level such as behavior,
embedded controls and functional module interfacing through
Aerostack APIs and services. While Aerostack provides strong
equipment for human-robot interaction, there are some limi-
tations when it comes to incorporate human feedback through
HILL approaches. The platform provides useful tools and ser-
vices, but it is unable to incorporate human feedback or human
demonstrations. We believe such mechanisms are critical when
transitioning from simulation to real-world applications.



Gazebo [27] is another 3D robot simulation software used
for modeling and simulating robots, sensors, and environ-
ments. It is also an open-source software that is widely used
in robotics research, and industrial robots. Gazebo provides a
comprehensive set of tools and libraries for simulating UAVs,
including flight controllers, sensors, and communication inter-
faces, and can be integrated with ROS for additional func-
tionality. While Gazebo is a useful tool for simulating physic-
robotic environments, it has its limitations when it comes to
model complex UAV behaviors and social interactions within
a multi-environment, such as interaction with operators and
others UAVs in the real world, with a high degree of accuracy.

III. PLATFORM

Cogment [4] is a general solution designed to build, train,
and operate AI agents in simulated or real environments shared
with humans. We used Cogment to implement an experimenta-
tion platform enabling AI research & development in scenario
involving the collaboration between humans and AI-driven
UAVs in defense and security use cases. Furthermore, the
Cogment HMT experimentation platform provides a smooth
path towards deployment in the real world.

A. Simulation

The Cogment HMT experimentation platform is designed
to experiment with scenarios involving a teams of UAVs
collaborating with humans. In its current form, the platform
is focused on defensive scenarios to safeguard critical infras-
tructures. UAVs are operated from a ground control station
by a human operator who focuses on high-level tasks such
as threat detection and interception. Low-level control of the
flight dynamics is not within the scope of this work — we
currently assume the speed of computers will outperform a
human’s direct operation of a UAV.

The platform supports scenarios where two teams are
present: the red team aims to penetrate a restricted zone, while
the blue team aims at protecting this zone by intercepting
the intruders. Figure 2 presents a schematic representation for
these types of scenario.

Each team consists of one or multiple UAVs. Simplified
flight dynamics are implemented for fixed-wing, vertical take-
off and landing. Because flight control is not the focus of the
platform, the modeling is simplified and projected into two
dimensions. Each drone can be equipped with multiple sensors
defined by their characteristics including range, orientation,
and probability to detect. Finally, the UAVs can have a
payload that can vary in their level of dangerousness — in
our scenario, the red team has no payload and the blue team
have electromagnetic pulse devices.

Additional fixed (e.g., ground-based) sensors can be added
to the scenario to help the blue team with threat detection.
They can have the same properties than the UAV sensors.

Each entity, UAV or fixed sensor, can be set up to have
a full awareness of the other entities, automatically share
information with their teammates, or only rely on their sensors.
This allows researchers to consider offensive and defensive

Fig. 2: This schematic representation of a typical scenario in
the Cogment HMT experimentation platform showcases a blue
team composed of 5 UAVs defending a restricted zone from
intrusion by a red team of 1 UAV.

tasks as fully or partially observable, with or without commu-
nication. Entities’ dynamics, sensory capabilities, and payloads
are simulated in a dynamically configurable simulation that is
integrated as an environment in a Cogment application.

B. Multi-agent architecture

The platform models the scenarios as a multi-agent system,
described in Figure 3. The primary agent type controls the
UAVs through velocity and rotation changes. Agents receive
full or partial observations from the environment. Multiple im-
plementations of UAV agents can be defined and instantiated,
including path following, heuristic behaviors, or trained poli-
cies. Furthermore, the agent can dynamically switch between
multiple control strategies over time.

The other type of actor enables human operators to have
indirect control over individual UAVs. This allows a dynamic
human-AI team-up in training or operation phases. The oper-
ator actor can add and remove waypoints to any UAV agent
in their team. The inputs are then provided to the UAVs
for decision making. For example, the operated UAV agent
implementation follows a simple path following policy which
consumes waypoints.

C. Platform use cases

The experimentation platform implementation choices are
based on its use cases. To conduct the experiments described
in Section IV, four use cases have been identified:

1) Record demonstrations from human operators who fully
control the drones.



Fig. 3: Multi-agent architecture

2) Run MARL non-interactive batch training leveraging
pre-recorded demonstrations.

3) Operate scenarios involving both human operators and
trained AI agents for test and validation purposes.

4) Run MARL online involving human operators.
The experimentation platform runs episodes (i.e., instances

of the airspace simulation), where one team is the winner at
the end of every episode. Use Cases 1, 3, and 4 require running
interactive episodes when human operators connect to the
experimentation platform. Use case 2 requires the ability to run
a large number of non-interactive (headless) episodes driven
by the agents’ training process. Use case 4 requires the ability
to run batches of interactive episodes, and potentially headless
episodes, and use the resulting data feed to continually train
the agents.

D. Cogment-based implementation

From the identified use cases we designed and implemented
the Cogment HMT experimentation platform architecture rep-
resented in Figure 4. Cogment is used to handle the orchestra-
tion of the execution and communication between the different
components:

• The agents, encapsulated in dedicated µServices as Cog-
ment actors

• The simulation, encapsulated in a dedicated µService as
a Cogment environment

• The human operator UI, encapsulated as a client Cogment
actor

• The training process, as a python script relying on the
Cogment SDK to trigger trials and retrieve generated
activity data

• The interactive session controller, as a component of the
frontend, relying on the Cogment SDK to trigger episodes

Cogment dispatches observations of the environment from
the simulation to the agents, as well as instructions from
higher-level agents. It then dispatches agents’ actions to the
environment, which updates the simulation and agents’ in-
structions. Furthermore, a priority-ordered list of multiple

agents can be assigned to a single drone entity at once. If a
higher priority agent outputs a velocity and rotation change, it
overrides lower priority ones (e.g., enabling dynamic takeover
by the human operator).

Cogment also provides its trial datastore, storing and making
available the activity data generated by all actors in all
environments.

The platform has been successfully deployed natively on
workstations on both Linux, MacOS, and Windows. Longer
headless training were executed on Compute Canada’s slurm-
based system. Finally, it was deployed on cloud infrastructure
on AWS Canadian datacenter to experiment with human input.

E. Interactive Interface

The frontend part of the experimentation platform is a
web application built in Javascript using React as its main
framework. It consists of two different screens: an episode
configuration form and an interactive episode runtime view.

The episode configuration screen enables users to configure
different parameters. The episode runtime view in Figure 1
shows a map of the environment with a top view, the drones
and their detection range, the ground radar, and detected red
drones. Each drone can be selected by clicking on it; from
there, users can add a waypoint for this drone by clicking on
the map or remove existing waypoints. Finally, users can pan
and zoom the map and pause or resume the simulation. This
simple, yet polished user interface enables a high degree of
interactivity and can be easily extended to support other tasks
or collaboration modalities.

IV. EXPERIMENTS

The experimentation platform was initially developed to
support recent research [1]. In this work, we investigate the
following two research questions:

1) How well does a trained agent perform in this specific
environment?

2) Do agent or human demonstrations help to make the RL
agent more sample efficient?



Fig. 4: Components architecture

In this section, we summarize this work to illustrate how
the platform is leveraged.

We aim to train RL policies for the blue drone with the
following Markov decision process formalization. The obser-
vation space consists of the relative positions of the drones
and restricted airspace over three time steps. The action space
is discrete and the reward function is positive for blue drones
successfully neutralizing the red drone and negative if the red
drone enters the restricted zone. The blue drones also receive
a shaping reward proportional to their relative distance from
the red drone in consecutive time steps.

The agents are trained using multi-agent centralized training
and execution setup, with each agent having its own observa-
tion space and the same reward function and action space.

We evaluated the performance of the trained agent using the
success rate as the metric. The success rate is defined as the
percentage of times the blue team wins over all evaluation
trials. This metric was chosen as it provides a clear and
intuitive measure of the agents’ ability to defeat the red drone
and is directly proportional to the average reward. We run
thirty evaluation episodes per hundred training episodes to
compute the success rate. During the evaluation episodes,
agents do not learn or explore. Our learning curves show
the performance metric reported in the evaluation episodes
averaged over five runs with different seed values to account
for training and environmental stochasticity.

We train a D3QN agent (cite) and plot its performance in
Figure 5. The agent reaches a success rate of roughly 90%
in 3500 episodes. The trained agent outperforms the baseline
heuristic agent, which has a success rate of 60%. The average
human performance is around 63%, which is almost equal to
the heuristic agent.

D3QN-PH reaches a success rate of more than 90% in 1600
episodes, outpacing D3QN, as shown in Figure 5. We per-
formed an unpaired t-test to examine the significant difference
between the performance of the D3QN-PH and D3QN agents.
The D3QN-PH agents exhibit a statistically significant perfor-
mance improvement compared to D3QN (p < 0.0001) and

Fig. 5: The success rate comparison for D3QN, D3QN with
trained agent demonstrations, D3QN with real human and
trained agent mix demonstrations, and a heuristic baseline.
Here, the suffix -PH represents demonstrations from a trained
agent and -MH indicates a mixture of real and trained agent
demonstrations.

the effect size is 1.43. At the end of learning, both algorithms
converge to the same final performance level (around 90%).
This supports our claim that trained agent demonstrations
make the RL agent more sample efficient in our environment,
consistent with existing results in the literature [28, 29].

A. Pilot study using human demonstration

We also trained the learning agent with a mix of agent
and actual human demonstrations: D3QN-MH in Figure 5.
We sampled an equal proportion of human and trained agent
demonstrations in every mini-batch used for training. We used
a mix of both types of demonstrations due to the lack of
human demonstrations collected in our ongoing pilot study.
The results do not suggest a significant learning improvement



(a) trained agent demonstration (b) a human user (User 1) (c) a human user (User 2)

Fig. 6: Visual representation of five episodes from trained agent and two different real human users

compared to D3QN-PH; however, the performance is still
statistically significantly improved over the D3QN baseline.

We visualized five trajectories of all blue and red drones
from trained agent demonstrations and two actual human
demonstrations from different users who played more than
30 games, as shown in Figure 6. In this figure, the blue star
denotes one of the ally drones that neutralized the enemy
drone and is the frame of reference (located at (0, 0)). The red
and green lines represent the relative position of the enemy
drone and the restricted airspace (with respect to the blue
drone’s position). Figure 6(a) shows five trajectories of ally
drones generated from the trained D3QN agent. We note that
across all the figures, the red drone starts moving towards
the restricted zone while being chased by the blue drones
until it is neutralized. The low density of red lines around
the blue star indicates that the blue drones quickly neutralizes
the red drone without following it for a long time. From
Figure 6(b) and 6(c), which depicts trials by two different
human participants, we notice that there is more movement
(high-density) around the blue star, suggesting that the human
tries setting waypoints in different areas (using the whole
team of five blue drones) of the map to neutralize the red
drone. These trajectories are sub-optimal (longer trajectory
length) as compared to the trajectories from trained agent
demonstrations. However, these might be helpful to neutralize
the red drones in difficult environment configurations where
the trained RL agents fails to catch the enemy drone (trained
agents have a failure rate of around 10% in this task).

V. FUTURE WORK

Since this simulation has a learning curve for humans
because of the interface and the dynamics, we intend to collect
more demonstrations from humans and to include a burn-in
period for humans to understand the environment and learn to
play before collecting demonstrations.

In order to advance research and development on human-
machine teaming, we aim to continue expanding the experi-
mentation platform.

We are working on accelerating the time to experimentation
by providing access to off-the-shelf algorithms implementing

well-known HILL learning techniques. This will allow re-
searchers to focus on the core challenges of their research,
rather than on implementing the basics of the learning loop.

We want to encompass a wider range of scenario types.
This will enable researchers and developers to explore the
potential of human-machine collaboration in more domains in
defense and beyond, such as disaster response or logistics. One
example of extension is the ability to support hybrid teams in
the air including both UAVs and manned aircrafts.

Developing collaborative systems involving embodied AIs
and human operators starts in simulation and aims at being
deployed in the real world: the sim-to-real challenge. While
the experimentation platform primarily aims at supporting
in silico development and experimentation, by leveraging
Cogment it is ready to move towards real world deployment.

Sim-to-real is not a one-step process from an agent devel-
oped in simulation to the real world. In fact, creating interme-
diate steps can make this process smoother and less challeng-
ing. Because it decouples the actor and environments’ roles
with their instances, Cogment makes this process smoother.
The Cogment HTM experimentation platform leverages this
feature to support both fully simulated episodes and interactive
episodes, going from simulated pseudo-human actors to actual
human actors. At the same time, it can go from its current
simple airspace simulation to more realistic one and finally to
pilot actual UAVs.

To ensure that the results obtained from our experimentation
platform are reliable and can be compared across differ-
ent studies, we aim at developing standardized evaluation
methods. This is a challenging task in itself, as meaning-
ful evaluation of human-machine teaming requires a holistic
understanding of the role of humans in the loop. Evaluation
metrics need to take into account not only task performance,
but also aspects such as human trust, situation awareness,
workload, and cognitive load.

Finally, we recognize that the interface between humans and
AI agents is a crucial aspect of human-machine teaming. We
are exploring how natural language interfaces can facilitate
communication and collaboration between humans and AI
agents, with the goal of improving trust, transparency, and
robustness. This is a challenging research area, as natural



language interfaces for complex systems require sophisticated
natural language processing, dialogue management, and rea-
soning capabilities. However, we believe that this research can
pave the way towards more effective and intuitive human-
machine teaming interfaces in the future.

VI. CONCLUSION

The continued exploration and research around human-
machine teaming systems has the potential to revolutionize
a wide range of applications, from robotics to aerospace
and defense. Emerging technologies such as large language
models, MARL, and embodied robotics are playing an in-
creasingly significant role in reinventing the bidirectional
collaboration between humans and machines for decision-
making in complex and critical environments [1].

In this context, the Cogment HMT experimentation platform
provides a powerful and flexible tool for applied research
and evaluation of HMT systems. Early results leveraged the
main benefits of the platform including a simple and fast
simulation, heterogeneous multi-agent architecture, the ability
to run both headless and interactive episodes, and the dynamic
agent “takeover” capability. The platform’s flexibility enables
researchers to easily test different configurations and make
adjustments without affecting the overall functioning of the
system.

We hope that this work and Cogment can facilitate the
acceleration of human-machine teaming development while
keeping the human factors at the center of this effort.
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